skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Budge, Aaron S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Beauregard, Melissa S; Budge, Aaron S (Ed.)
    This paper offers a comparative study of two soils- Glauconite and Ottawa F65- utilizing X-ray micro-computed tomography (µCT) scan. The tendency of glauconite sand to transform from coarse to fine-grained material through particle crushing poses challenges in terms of stability and strength, particularly in foundation engineering and offshore site investigation. This paper investigates the particle size distribution and explores the subtleties of particle characteristics. Non-invasive µCT and 3D image analysis are used to measure and compare particle shape parameters: median aspect ratio (0.56 for Glauconite,0.54 for Ottawa F65), median convexity is 0.86 for both soils, and median sphericity (0.81 for Glauconite, 0.83 for Ottawa F65). By drawing comparisons between the statistical data of particle shape parameters from both soils, insights are gained into their morphological characteristics. Additionally, fitted Johnson distributions are provided for 3D Aspect ratio, sphericity, and convexity which may be useful for discrete element method modeling of these soils. 
    more » « less
    Free, publicly-accessible full text available February 27, 2026
  2. Beauregard, Melissa S; Budge, Aaron S (Ed.)
    Soil bioengineering using Vetiver is a widely used vegetation-based slope failure mitigation technique. Though Sunshine Vetiver grass, also known as Chrysopogon zizanioides, grows 3 m in length inside the soil in tropical and subtropical climate conditions, the depth up to which Vetiver impacts the soil property has remained undetected. This study has investigated the subsurface influence zone of Vetiver grass based on nondestructive geophysical investigations Electrical Resistivity Imaging (ERI) and Multichannel Analysis of Surface Waves (MASW) in a high plasticity expansive clay soil slope in Mississippi, United States. ERI data collected on the slope revealed that the top 2 m of the high plasticity clay soil had a higher resistivity value with Vetiver (ranging from 4 to 60 􀀺m) compared to the soil without Vetiver (ranging from 2 to 28 􀀺m). MASW investigation results at the same slope have indicated a similar increase in shear wave velocity with Vetiver up to 2 m indicating enhanced soil stiffness while compared to the section without it. The combined geophysical approach using ERI and MASW reveals that the root system of the Vetiver grass enhanced the moisture content and increased the stiffness of soil within the top layers. Though the grass roots can grow more than 3 m inside the soil, the major influence was observed within the top 2 m from the slope surface. 
    more » « less
    Free, publicly-accessible full text available February 27, 2026
  3. Beauregard, Melissa S; Budge, Aaron S (Ed.)
    Climate change has been playing a crucial role in altering the precipitation patterns in the southern USA. States like Mississippi, Louisiana, and Alabama have seen increased numbers of extreme events like hurricanes, storms, and heavy rainfall. Therefore, rainfall-induced landslides have been very common in recent years. In Mississippi, due to the prevalence of highly expansive clay soil, slope failure has brought about a huge financial burden for the authority. In order to create resiliency in highway embankments, regular monitoring and early detection of landslide risks are important. The objective of the current study is to evaluate the landslide behavior of highway slopes under changed climatic conditions. One highway slope near Grenada, Mississippi, was selected for the study. The slope has a history of shallow landslide. Remote sensing technology like Light Detection and Ranging (LiDAR) has been utilized to compare the topographical surfaces in different seasons. Electrical Resistivity Imaging (ERI) was performed, and seasonal variations in subsurface moisture contents were obtained from the ERI profiles. In addition, rainwater data of the site location from available open sources were collected. Perched water zones have been detected through the ERI images when there were events of extreme rainfall. A drone mounted with an advanced LiDAR scanning system has been utilized to detect any trend of slope movement in the study site. The LiDAR scan gathered dense point cloud data to construct 3D surfaces and produce topographic maps of the slope. The integration of ERI and LiDAR provides a comprehensive understanding of the climate resilience of highway slopes in the face of climate change. 
    more » « less
    Free, publicly-accessible full text available February 27, 2026